久久久久国产精品-兄弟的妈妈免费观看电视剧完整版中-午夜秋霞-成人av小说-男生女生叉叉-9l视频自拍九色9l视频成人-亚洲一区欧美一区-热re99久久精品国产99热-日韩免费中文字幕-男生捅女生肌肌-久久爱网-雪臀抽搐求饶娇喘呻吟-av在线播放地址-黄色一级片a-欧日韩精品-天天操天天射天天舔-91网站大全-不用播放器的免费av-91九色精品-依人网站-亚洲区小说区图片区qvod按摩-99精品区-古代黄色一级片-九九九九九九九九九-性福宝草莓视频app-欧美日韩成人免费-深夜91-亚洲av无码久久忘忧草-日本免费看黄-激情丁香综合

Solution
Boiler feedwater treatment systems for power plants, steel mills, chemical plants, etc

Boiler feedwater treatment systems for power plants, steel mills, chemical plants, etc

In the thermal systems of chemical and thermal power plants, the quality of water is an important factor affecting the safety and economic operation of thermal equipment. Natural water contains many impurities. If these water are introduced into thermal equipment without purification treatment, it will cause various hazards due to poor quality of steam and water, mainly scaling, corrosion, and salt accumulation of thermal equipment.
Scaling: Scaling is highly likely to occur in areas with high heat loads, such as boiler tubes and various heat exchangers. The thermal conductivity of scale is several hundred times worse than that of metal, and the scaled metal pipe wall will overheat, reduce strength, and cause damage to the pipeline. Improper treatment of cooling water can cause scaling of condenser copper pipes, reduce heat transfer efficiency, and ultimately lower turbine output.
Corrosion: Poor water quality can cause corrosion of thermal equipment, mainly electrochemical corrosion, which is prone to occur in metal parts that frequently come into contact with water, such as water supply pipelines, economizers, water-cooled walls, superheaters, steam turbines, and condensers. Corrosion will greatly reduce the service life of equipment.
Salt deposition: When steam containing a large amount of impurities passes through the superheater and turbine, impurities will deposit, which is called salt deposition in the superheater and turbine; The accumulation of salt in the superheater may cause tube bursting, and the accumulation of salt in the turbine will greatly reduce the output of the turbine.

Boiler feedwater quality standards

Control project

Standard value and expected value

Overheated steam pressure Mpa

drum boiler

Once-through boiler

3.8~5.8

5.9~12.6

12.7~15.6

>15.6

5.9~18.3

>18.3

Hydrogen conductivity(25℃) μS/cm

Standard value

≤0.30

≤0.30

≤0.15a

≤0.15

≤0.10

Expected value

≤0.10

≤0.10

≤0.08

Hardness/(μmol/L)

Standard value

≤2.0

Dissolved oxygen μg/L

AVT(R)

Standard value

≤15

≤7

≤7

≤7

≤7

≤7

AVT(O)

Standard value

≤15

≤10

≤10

≤10

≤10

≤10

Iron  μg/L

Standard value

≤50

≤30

≤20

≤15

≤10

≤5

Expected value

≤10

≤5

≤3

Copper μg/L

Standard value

≤10

≤5

≤5

≤3

≤3

≤2

Expected value

≤2

≤2

≤1

Sodium  μg/L

Standard value

≤3

≤2

Expected value

 

≤2

≤1

Silica μg/L

Standard value

≤20

≤20

≤20

≤20

≤15

≤10

Expected value

≤10

≤10

≤10

≤10

≤5

Chloride ion /(μg/L)

Standard value

≤2

≤1

≤1

TOCi (μg/L)

Standard value

≤500

≤500

≤200

≤200

≤200

For water-cooled units without condensate polishing and desalination devices, the hydrogen conductivity of the feedwater should not exceed 0.30 μ S/cm.